Weibw's World Weibw's World
首页
  • HTML
  • Python

    • Python基础知识
    • Python CookBook第三版
    • Flask
  • MySQL

    • MySQL基础知识
    • MySQL调优
    • MySQL面试题
算法
  • FineReport
  • Kettle
  • Git
  • 微信公众号文章
  • 优秀博客文章
  • 其他
收藏夹
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Weibw

一个没有梦想的咸鱼
首页
  • HTML
  • Python

    • Python基础知识
    • Python CookBook第三版
    • Flask
  • MySQL

    • MySQL基础知识
    • MySQL调优
    • MySQL面试题
算法
  • FineReport
  • Kettle
  • Git
  • 微信公众号文章
  • 优秀博客文章
  • 其他
收藏夹
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • 《Flask》

  • 《Python Cookbook》第三版

    • 第一章:数据结构与算法

    • 第二章:字符串和文本

    • 第三章:数字日期和时间

    • 第四章:迭代器与生成器

    • 第五章:文件与IO

    • 第六章:数据编码和处理

    • 第七章:函数

    • 第八章:类与对象

    • 第九章:元编程

    • 第十章:模块与包

    • 第十一章:网络与Web编程

    • 第十二章:并发编程

    • 第十三章:脚本编程与系统管理

      • 通过重定向-管道-文件接受输入
      • 终止程序并给出错误信息
      • 解析命令行选项
      • 运行时弹出密码输入提示
      • 获取终端的大小
      • 执行外部命令并获取它的输出
      • 复制或者移动文件和目录
      • 创建和解压归档文件
      • 通过文件名查找文件
      • 读取配置文件
      • 给简单脚本增加日志功能
      • 给函数库增加日志功能
        • 问题
        • 解决方案
        • 讨论
      • 实现一个计时器
      • 限制内存和CPU的使用量
      • 启动一个WEB浏览器
    • 第十四章:测试、调试和异常

    • 第十五章:C语言扩展

  • Python基础

  • Python
  • 《Python Cookbook》第三版
  • 第十三章:脚本编程与系统管理
weibw
2022-01-18

给函数库增加日志功能

# 问题

你想给某个函数库增加日志功能,但是又不能影响到那些不使用日志功能的程序。

# 解决方案

对于想要执行日志操作的函数库而已,你应该创建一个专属的 logger 对象,并且像下面这样初始化配置:

# somelib.py

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

# Example function (for testing)
def func():
    log.critical('A Critical Error!')
    log.debug('A debug message')
1
2
3
4
5
6
7
8
9
10

使用这个配置,默认情况下不会打印日志。例如:

>>> import somelib
>>> somelib.func()
>>>
1
2
3

不过,如果配置过日志系统,那么日志消息打印就开始生效,例如:

>>> import logging
>>> logging.basicConfig()
>>> somelib.func()
CRITICAL:somelib:A Critical Error!
>>>
1
2
3
4
5

# 讨论

通常来讲,你不应该在函数库代码中自己配置日志系统,或者是已经假定有个已经存在的日志配置了。

调用 getLogger(__name__) 创建一个和调用模块同名的logger模块。 由于模块都是唯一的,因此创建的logger也将是唯一的。

log.addHandler(logging.NullHandler()) 操作将一个空处理器绑定到刚刚已经创建好的logger对象上。 一个空处理器默认会忽略调用所有的日志消息。 因此,如果使用该函数库的时候还没有配置日志,那么将不会有消息或警告出现。

还有一点就是对于各个函数库的日志配置可以是相互独立的,不影响其他库的日志配置。 例如,对于如下的代码:

>>> import logging
>>> logging.basicConfig(level=logging.ERROR)

>>> import somelib
>>> somelib.func()
CRITICAL:somelib:A Critical Error!

>>> # Change the logging level for 'somelib' only
>>> logging.getLogger('somelib').level=logging.DEBUG
>>> somelib.func()
CRITICAL:somelib:A Critical Error!
DEBUG:somelib:A debug message
>>>
1
2
3
4
5
6
7
8
9
10
11
12
13

在这里,根日志被配置成仅仅输出ERROR或更高级别的消息。 不过 ,somelib 的日志级别被单独配置成可以输出debug级别的消息,它的优先级比全局配置高。 像这样更改单独模块的日志配置对于调试来讲是很方便的, 因为你无需去更改任何的全局日志配置——只需要修改你想要更多输出的模块的日志等级。

Logging HOWTO (opens new window) 详细介绍了如何配置日志模块和其他有用技巧,可以参阅下。

编辑 (opens new window)
上次更新: 2023/10/13, 17:39:25
给简单脚本增加日志功能
实现一个计时器

← 给简单脚本增加日志功能 实现一个计时器→

最近更新
01
牛客网非技术快速入门SQL练习题
03-08
02
其他日常SQL题
03-07
03
用户与权限管理
03-05
更多文章>
Theme by Vdoing | Copyright © 2021-2023 | Weibw | 辽ICP备18015889号
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式